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1 Introduction

There is a lot of work dealing with the determinant
of several special matrices involving some famous
numbers. Jaiswal evaluated some determinants of cir-
culant whose elements are the generalized Fibonacci
numbers [1]. Lind presented the determinants of cir-
culant and skew-circulant involving Fibonacci num-
bers [2]. Lin gave the determinant of the Fibonacci-
Lucas quasi-cyclic matrices in [3]. Shen considered
circulant matrices with Fibonacci and Lucas numbers
in [4]. By constructing the transformation matrices,
he presented the following results:

(i) Let A, = CiI’C(Fl, Fy, ...
matrix, then

, F},) be circulant

det An = (1 — Fn+1>n_1

n—1 1_F k—1
+F7’$_QZF,§ < Fn+1> ,
k=1 n

where F;, is the nth Fibonacci number.
(ii) Let B, = Circ(Lq, Lo, ..., Ly) be circulant
matrix, then

det B, = (1—Lpy1)" 14 (L, —2)"2
n—1 k—1
1-— Ln+1
L —3L —_
X k:1( k42 k+1) ( I 9 ) :

where L,, is the nth Lucas number.

The determinant problems of the row first-minus-
last right (RFMLR) circulant matrices and row last-
minus-first left (RLMFL) circulant matrices involving
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the Fibonacci, Lucas, Pell and Pell-Lucas sequences
are considered in this paper. The explicit determinants
are presented by using some terms of these sequences.
The techniques used herein are based on the inverse
factorization of polynomial. Firstly, we introduce the
definitions of the RFMLR and RLMFL circulant ma-
trices, and properties of the related famous numbers.
Then, we present the main results and the detailed pro-
cess.

Definition 1. [5] A row  first-minus-last
right (RFMLR) circulant matrix with
the first row (ai,ag,...,a,), denoted by

RFMLRcircfr(ay, as, . . .
matrix of the form

,ap), IS meant a square

aq a9 e (0799

an, a1 — Qp, Ap—1
A=

a3 a4 —as ... a9

az asz —az a1 — an

It can be seen that the matrix has an arbitrary first
row and the any other row obtained from the previous
one according to the following rule: Get the (¢ + 1)-
st row by subtracting the last element of the i-th row
from the first element of the ¢-th row, and then shifting
the elements of the i-th row (cyclically) one position
to the right. Obviously, the RFMLR circulant matrix
is determined by its first row.

Note that the RFMLR circulant matrix is a " +
x — 1 circulant matrix [6], which is neither an exten-
sion nor special case of the circulant matrix [7, 8].
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They are two completely different kinds of special
matrices.

We define the matrix ©(; _) as the basic RFMLR
circulant matrix, that is,

0 1 0 0
Oc-n = |+ . . g
0 ... ... 0 1
1 -1 0 0

= RFMLReircefr(0,1,0,...,0).

Both the minimal polynomial and the characteristic
polynomial of ©¢ _;y are g(z) = 2" +z — 1,
which has only simple roots, denoted by ¢; (i =

1,2,...,n). Furthermore, ©; _) satisfies @fl 1y =
RFMLRcircfr(0,---,0,1,0,---,0) and @?1 -1
—— N—_—— ’

J n—j—1
I, — ©(1,_1), then a matrix A can be written in the
form

A=f(Ou 1) =) a®il, O
i=1

if and only if A is a RFMLR circulant matrix, where
the polynomial f(z) = Y"1 | ;2" is called the rep-
resenter of the RFMLR circulant matrix A.

Since ©(; _;) is nonderogatory, then A is a
RFMLR circulant matrix if and only if A commutes
with O _y), thatis, A©(; _1) = O _1)A. Because
of the representation (1), RFMLR circulant matrices
have very nice structure and the algebraic properties
also can be easily attained. Moreover, the product of
two RFMLR circulant matrices and the inverse A~!
are again RFMLR circulant matrices.

Definition 2. /5] A row last-minus-first left (RLMFL)
circulant matrix with the first row (ai,az,...,a,),
denoted by RLMFLcircfr(ay, as, . .., ay,), is meant a
square matrix of the form

ai PN Ap—1 A,
as .. an — a1 a1
B =
Gn—1 n—-3 —apn—-2 Qap-2
Gn — ax p—2 —ap—-1 Qnp—1

It can be seen that the matrix has an arbitrary first
row and the any other row obtained from the previous
one by the following rule: Get the (i + 1)-st row by
subtracting the first element of the -th row from the
last element of the i-th row, and then shifting the ele-
ments of the ¢-th row (cyclically) one position to the
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left. Obviously, the RLMFL circulant matrix is deter-
mined by its first row.

Let A = RLMFLcircfr(aq, ag,...,a,) and B =
RFMLRcircfr(ay, ap—1,-..,a1). By explicit com-
putation, we find

A = BI,, 2)

where fn is the backward identity matrix of the form

0
0

1

3)

The Fibonacci and Lucas sequences {F,} and
{L,} are defined by

4)
)
with the initial condition Fy = 0, F} = 1 and Ly = 2,
Ly =1.

The Pell and Pell-Lucas sequences {F,} and
{Qn} are defined by [10]

Fn+1 = Fy+ Fo,
Ln+1 = Lp + Lp-1,

n>1,
n>1,

Pn+1:2Pn+Pn—la
Qnt1 =2Qn + Qp-1, n=>1, (7

with the initial condition Py = 0, P, = 1 and Qy = 2,
Q=2

The first few members of these sequences are
given as follows:

n 0 1 2 3 4 5 6
F, 0 1 1 2 3 ) 8
L, 2 1 3 4 7T 11 18
P, 0 1 2 5 12 29 70
Qn 2 2 6 14 34 82 198

Recurrences (4) and (5) involve the characteristic
equation 22 — x — 1 = 0 with roots a = (1 4+ /5)/2,
B = (1 — +/5)/2. Moreover, the Binet form for the
Fibonacci sequence is

a — Bn
F,=—- 8
=g 8)
and the Binet form for Lucas sequence is
L, =a" + " (©)]

Recurrences (6) and (7) as well imply the characteris-
tic equation % — 22 — 1 = 0 with roots y=1+ V2,
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5 = 1 — v/2. Furthermore, the Binet form for the Pell
sequence is

no_ §n
Py=1—" (10)
)
and the Binet form for the Pell-Lucas sequence is
Qu=1"+0" (an

2 Main Results

By Proposition 5.1 in [6], we deduce the following
lemma.

Lemma 3. Let A = RFMLRcircfr(ay, ag, ..., ay).
Then the eigenvalues of A are given by

n
_ Jj—1
51)—5 aje]
=1

and the determinant of A is given by

det A = ﬁAl = ﬁzn:ajf“z_l.
=1

i=1 j=1

i=1,2,...,n,

Lemma 4. Suppose ¢; (i = 1,2,...,n) are the roots
of the characteristic polynomial of © (1 _y). Then

n

l_I(an2 +bgi+c)=c"+a" Ha+b+c)

i=1
+e(ap +ayTh) (@ +ah), (12)
where a, b, c € R and
—b+ Vb2 — 4ac —b — Vb2 — 4dac
T1 = ;o T2 = .
2 2

Proof: Since ¢; (i = 1,2,...,n) are the roots of the
characteristic polynomial of ©(; 1), g(z) = 2" +x—
1 can be factored as

n

o tr—1=]](z =) (13)
i=1
If a = 0, then we have
1_[(1)5Z +c)=(—-b)" H (—% — €Z>
i=1 =1
c\" ¢
A
(—b) 5 ;
="+ c(=b)" = (=)™
Obviously, the equality (12) holds when a = 0.
E-ISSN: 2224-2880
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If a # 0, then we deduce

n
(as + be; + ¢ —a“H(g + 52 Z)

1 =1

13 -) (-

=1

ﬂ’m:

where

—b+\/b2—4ac‘ —b—+Vb? — 4ac

r1 = B ;o L2 = B

By the factored form (13), we have
n
H (ae? + be; + ¢)

()

=c"+a" Ha+b+c)

+c (x?_l + acg_l) — (2] + 23).
The proof is completed. O
2.1 Determinants of the RFMLR and

RLMFL Circulant Matrix Involving
Fibonacci Numbers

Theorem 5. Let C' = RFMLRcircfr(Fy, Fy, ..., F)
andn > 3. If n is even, then
1—F, )"+ Fn1
det C = ( )"+ Fy
_Ln 2 + 2
+(1—Fn+1)( ) ol
_Ln—2 +2 7
and if n is odd, then
1—Fp)" +Ft
det C = ( nt1)" + By
_Ln—2
(1= Fogr) (4957 Y) =yl — o
+ )
_Ln—2
where
—n1+\/ 1—4F (1= Fpy1)
Y1 = , (14)
_nl_\/ 1—4F (1= Foq1)
Y2 . (15)
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Proof: Obviously, C has the form Theorem 6. Let D = RFMLRcircfr(F,, ..., Fy). If
n is even, then
n b F,
F, F—-F, ... Fnq detD:F7?+Fn+2_Fn(y3 +y£L 1)_3/?_3/2
c=1 : : : . —Lnta 7
F3 Fy—F3 ... Fy and if n is odd, then
F F3—-F ... F1—-F, . - - . .
Fn+Fn+2+Fn(y3 + Yy )+y3+y4
If n = 1, then det C' = 1. det D = L2 :
If n = 2, then el
11 where
(1) :
Fuir = 14/ (Fup1 — 1) — 4F, o
and det C = —1. ¥ = 2 ’
If n > 3, then we have Froi—1— \/(Fn-l—l B 1)2 _4F,
n Ys = 5 V)
det C = [[ (Fy + Fagi + -+ + Fpel ™)
i=1 Proof: The matrix D has the form
_ - (a—5+a2—528 E, E,_4 Fy
palen a— 0 a—p8 " F F, - F I
_an D = : : . :
o D) . . S
O‘_B Fn—2 Fn—3_Fn—2 Fn—l
HF(C: +Fn 15z+1_Fn+1 anl Fn72_Fn71 Fn_anl
0456 —(a+B)ei+1 According to Lemma 3 and the Binet form (8), we
have
owing to Lemma 3 and the Binet form (8). By Lemma .
4 and the Binet form (9), we obtain det D — H (F'n, N E, et + Fley_l)
n 1=1
H (Fnz’f? + Fh_16;, +1— Fn+1) = (1 — Fn+1)n n a — Bn L ﬁn—l
i=1 = H < + &i
n—1 n—1 n n i=1 @ B a— 6
TN (1= Fogr) (07 + 05 7h) — ot — v 5
o — 1
where y1, yo2 are defined by (14) and (15), and tot—" a—g & )
n b 24+ (1—-Fy)e— F
o 7 n+1) <4 n
[1[ep<? = (a+ B)ei +1] = —Lnat(-1)"+1. - H el —(a+Bei+af
=1 i=1
Therefore, if n is even, then Using Lemma 4 and the Binet form (9), we obtain
(1= Fu)" + Fy! g
det C' = _Ln72+2 “ 1 (1—Foq1)e Fn] = (—Fn)"
1=
1-F ey gy gy
n ( we) (0 s — ot — v ’ ()" Frpo — Fy (v 457 Y) — o —
_Ln72 +2

and if 7 is odd, then where ys3, y4 are defined as (16) and (17), and

n

dero — L= )"+ B [[[e? = (@+B)es +aB] = —Lppa + (-1)" — 1.
_Ln72 i=1
N (1—Fpy1) (yl +yy 1) -yl —yy Consequently, if n is even, then
I :
" ot — Fot Fure = Fo (5" i ") — o — ot
The proof is complete. 0 et = Lo )
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and if n is odd, then

det D =
Ln+1 +2

The conclusion is obtained.

O
Theorem 7. Let E = RLMFLcircfr(Fy, Fy, ..., F))
and ys, y4 be given by (16) and (17). If n = 0
(mod 4), then

F'+ Fpo—Fy (y5 ™) — oy — oy

det £ =
_Ln+1

Ifn=1 (mod 4), then

E' 4 Fopo+ By (v o5 + o3 + )

det £ =
Ifn =2 (mod 4), then

FM+ Fpo—Fy (v ™) — oy — oy

det £ =
Ln—l—l

Ifn =3 (mod 4), then

E' 4 Frpo+ Fy (v o5 + o + )

det £ =
—Lpy—2
Proof: The matrix E has the form
Fy . Fo_1 F,
Fy o F,—F F
E = L : :
Fn—l Fn—S_Fn—Z Fn—2
Fn_Fl Fn72_Fn71 anl

From the relation (2), we have
E=DI,,

where fn is the backward identity matrix of the form
(3). Thus, R

det E = det D det I,
and

~ n(n—1)

det I, = (—1)" =z .
Define y3 and y4 as (16) and (17). According to The-
orem 6, we can obtain the following results: If n = 0
(mod 4), then

ot = et Popo = Fu (5 03 ™h) —f —u
_Ln+1 ’

If n =1 (mod 4), then

F o+ Fopo + F (U8 007 Y) + oy + 2

det £ =
Ln+1 +2
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If n =2 (mod 4), then

i - Bt Furr = Fu (05 i) — i — ot

Ln+1

If n =3 (mod 4), then

F,?+Fn+2+Fn (ygfl-i-yffl) ‘1‘@/:?‘*‘@/2

det £ =

¢ *Ln+1 -2
The proof is complete. O
2.2 Determinants of the RFMLR and

RLMFL Circulant Matrix Involving
Lucas Numbers

Theorem 8. Let FF = RFMLRcircfr(Ly,...,Ly)
andn > 3. If n is even, then

dot F = L= Lnt)" +3L570
_Ln—Q +2
L= La) (5" +05™) — 48 — v
_Ln—2 +2 7

and if n is odd, then

dot = (L= Lne)" #3057
_Ln—2
N (1= Lnst) (8 ue™") — vl — v
_Ln—2 ’
where

Lnfl +2- \/(Lnfl + 2)2 - 4Ln (1 - Ln+1)

Ys = — :

(18)

Lo +2+4+/(Lp-1+2)2—4L, (1 — Ly11)

Y6 = .
—2

19

Proof: The matrix F' has the form

14 Lo . L,

L, Li-—L, Ly_1
F= : : - :

L3 Ly—Ls ... Lo

Ly L3 — Lo Ly— Ly

If n =1, thendet F = 1.
If n = 2, then

(i %)
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and det I' = —11
If n > 3, then we have

det F' = H L1 + Log; +
=1

=1 [e+8+ @ +8%)e+

=1

+(a™ + 8™l

S Lne? 4+ (L1 +2)ei +1—
1;[ aﬁa —(a+B)e+1

-+ Lns?_l)

Ln+1

from Lemma 3 and the Binet form (9).
Using Lemma 4 and (9), we obtain

n
H [Lng} + (Ln—1+2)gi + 1 — Lyp1]
i=1
= (1= Lpg1)" +3L07 " +

n—1

X (y2 ™' + g

(1 _Ln+1)

where ys5, yg are defined as (18) and (19), and
I [eBe? = (a+Bei +1] = —Lna+ (-1)" +1
i=1

Hence, if n is even, then

(1—Lp)" +3L% 1
_Ln 2+ 2
+ (1 - Ln-i-l) (

det F' =

n—1

L. Yo

) —yE — g

)

and if n is odd, then

— Lyp)" +3L771
_Ln 2

+ (1 - Ln+1) (ys

1
det F' = (

n—1

+ Ys

) —v5 — g
_Lnf2 '

The proof is complete. g

Theorem 9. Let G = RFMLRcircfr(L,,
n is even, then

L) If

(2 — Ln)n -+ Ln+2
_Ln+1
2— Ly,
i ( ) (?J?

det G =

n—1

+ yg
_Ln+1

) =y — g

I
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and if n is odd, then

(2 - Ln)n — Lpyo
_Ln+1 -2
n—1

+(2_Ln)(y7 + Yg )_y?_yg
_Ln+1_2 ’

det G =

where

LH1+1+VELJ—2L%2+9

yr = , (20
n+1 +1- \/Ln+1 2Ln72 +9
Ys = (21)
Proof: The matrix GG has the form
Ln Lnfl e Ll
Ly L,— L4 ... Lo
G=| : : :
Ln—2 Ln—S - Ln—2 Ln—l
Lnfl Ln72 - Lnfl Ln - Lnfl

According to Lemma 3 and the Binet form (9),
we have

det G =[] (Zn + Lnrgi + -+ + Liel ™)
=1

[Oé _’_ﬁn ( n— l-l—,Bn_l)Si

@
I
-

oot (a+ Bl
7f1—§—%LHy+Ua+2—Ln
e2 — (a+ PB)e; +af '

i—1

~

Using Lemma 4 and (9), we obtain

n

11— - @Tnyr+1)ei+2-Lo] = (2 Ln)"
=1
+(_1)nLn+2+(2_Ln)( +yg 1) y?—yg,

where y7, ys are defined as (20) and (21), and
H [e2 — (a+ B)ei +aB] = —Lpg1 + (1) — 1.
i=1

Consequently, if n is even, then

(2 — Ln)n -+ Ln+2

det G =
_Ln+1
(2—Ln) (05 ' +ud™") — o8 — o
_l’_
_Ln+1
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and if n is odd, then

(2—Ln)" — Lpso

det G =
Tt —2
L@ La) () —vF
Lot -2 '
Theorem 10. Let H = RLMFLcircfr(Ly,...,Ly)
and yy, ys be defined as (20) and 21). If n = 0
(mod 4), then
n
det I — (2= Ln)" + Lnto
_Ln+1
(2= L) (g7 " +o5 ") —vf — o8
+ .
_Ln+1
Ifn=1 (mod 4), then
n
det I — (2—Ln)" — Lno
_Ln+1 -2
L@ L) () — v -k
_Ln+1 —2 .
Ifn =2 (mod 4), then
n
det I — (2= Ln)" + Lnto
Ln+1
(2= L) (F " +057") — o —
+ .
Ln+1
Ifn =3 (mod 4), then
2—L,)"—L
dot i = 2= En)" = Lnga
(2= Lo) (7 +u8™") —vf — g
+ .
LnJrl +2

Proof: The matrix H has the form

L1 Lnfl Ln
Lo L, — 14 L4
H = : : :
Ln—l Ln—3 - Ln—2 Ln—2
Ln - Ll Ln72 - Lnfl Lnfl
and can be written as
H=GI,,

where fn is the backward identity matrix of the form
(3). Thus, R
det H = det G det I,,

E-ISSN: 2224-2880
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and
n(n—1)
2

det I, = (—1)

Define y7 and yg as (20) and (21), respectively. Ac-
cording to Theorem 9, we have the following results:
If n =0 (mod 4), then

(2 - Ln)n + Ln+2
—Lni1
(2= Lo) (F ' +ug™") — o8 — 0§
_Ln+1 :

det H =

+

If n =1 (mod 4), then

(2- Ln)n — Lnyo

—Lpt1 —2
+@—Lw@?4+£qfﬂ#—%
_Ln+1 -2

det H =

If n =2 (mod 4), then

(2- Ln)n + Lny2

Ln+1
*_(2——Ln)(y?‘14—y5‘1)—-y?-yg
Ln—l—l

det H =

If n =3 (mod 4), then

2—Ln)" — Lo

Ln+1 +2

(2—Lo) (F ' +ug™") — o8 — g
+ .

det H = (

The proof is complete. O

2.3 Determinants of the RFMLR and
RLMFL Circulant Matrix Involving Pell
Numbers

Theorem 11. Let J = REMLRcircfr(F;, . ..
n is even, then

(1 — Pn+1)n + Pg—l
_4Pn71 +3
(1= Pay1) (577" +257") —2f — 23
—4P,_ 1+ 3

det J =

and if n is odd, then

- Pn—l—l)n + P’rrzlil

—4P, 1 —1
(1= Post) (77 42571 —2f — 28
—4P,_1 —1 ’

1
det J = (

Issue 1, Volume 12, January 2013
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where
_Qn + \/ Q%_H - 16Pn
21 = ; (22)
4
and

_Qn - Q?z—i—l - 16Pn
29 = 1 . (23)

Proof: Obviously, J has the form

P P - P,
P, P—P, ... P,

J=| : L
Py P—P; ... P
P, Py—P, .. P —P,

According to Lemma 3 and the Binet form (10),
we have

det J = H (PL+ Pogi+ -+ Ppel™)
i=1
n B 2 _ 52 _
_H<7 5+7 56i+-- +’7 o" n—1>
y—20

_ ﬁ Ppe? + (Poy1 — Pa)ei+1— Popa
yoe2 — (v + 6)e; + 1 '

Furthermore, by straightforward computation, we
can obtain the following identities:

1
Pn+1_Pn:Pn+Pn—1:§Qna (24)
Qn-‘rl - Qn = Qn + Qn—l = 4Pn' (25)

From Lemma 4, (11) and (24) follows that

n
1 [Pne? + (Pay1 — Po)ei + 1 — Poya]
=1

(1 P+ B
+ (1 = Puy1) (Z711_1

where 21, zo are defined as (22) and (23).
According to Lemma 4, the Binet form (11) and
the identity (25), we have

n—1 n n
+ 25 )—zl — 29,

H 755 —(vy+d)e; + ]

=1
= Qn—l _Qn+2(_1)n+1
=—4P,_ 1+ 2 (—1)” + 1.

E-ISSN: 2224-2880
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Therefore, if n is even, then

1 _PnJrl)n“'Pr?_l

_4Pn71 +3
SO P (T ) o
—4P,_1+3

det J = (

and if n is odd, then

(1= Pon)" + Py

det J =
¢ 4P, | —1
LO=Pu) (T 457 - -
—4P,_1—1 '
The proof is complete. O
Theorem 12. Let K = RFMLRcircfr(P,, ..., P)).
If n is even, then
2P7 + Qn—H
det K = —_n @ T
¢ —8P, — 2
Py (28 2 28+ 2
4P, + 1 ’
and if n is odd, then
2P + Qnt1
det K = —2—"T-
¢ 8B, + 6
P (287 b 20 + 25+ 2
4P, + 3 ’
where
P+1—L+¢U%H—1f—4P
= — 56
2
P+1—1—VRP+1—QQ—4P
P — " Y
2
Proof: The matrix K has the form
P, P, .. P
P P, — P .. b
K=| : : L
Pn72 Pnf?)_Pan Pnfl
Pn—l Pn—2_Pn—1 Pn_Pl

According to Lemma 3 and the Binet form (10),
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we have

det K = [ [ (Pn + Pooiei +

n n_ gn n—1 _ 5n—1
= H <fy + i Ei

4 Pig )

=1 7_5 7_5
-9
s 220
v—=9
_ - Ez2+(1_PTL+1) i — Py
‘L 2 (et

Considering Lemma 4, (11), (24) and (25), we obtain

H [—E? + (1 — Pn+1) E; — Pn]

=1

= (=F)" + (=1)"(Pos1 + Pn)
— P (T AT -2 -
= (- 4 (-1t
— P (287 4+ 20 — 25 - 2,

where 23, z4 are defined as (26) and (27), and

H e — (v +6)e; + 9]
=1

—Qn— Qn-1+(-1)" -2
:_4Pn+(_) - 2.

Consequently, if n is even, then

det K — 2P + @nt1
—8P, —2
Po (o5 +2070) + 25+ 27
4P, +1 ’
and if n is odd, then
det K = 25 & Qnt
8P, +6
+_f%(2§71—F2271)4—z§—%zZ
4P, + 3 )
The proof is complete. O

Theorem 13. Let L = RLMFLcircfr(Py, ..., P,) and
z3, z4 be defined as (26) and (27). If n = 0 (mod 4),
then

2P + Qi1
8P, — 2
A R et
4P, + 1 ’

det L =
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Ifn =1 (mod 4), then

2P + Qn—H
det L = n @ T
¢ 8P, 1 6
+>F%(y§_1+—y2_1)+-y§-ky2
4P, + 3 '
Ifn =2 (mod 4), then
"
det I — 2P 4+ Qnt1
8P, +2
B (T ) s
4P, +1 '
Ifn =3 (mod 4), then
2P"
det I — LQ”“
—8P, — 6
By ) s
4P, + 3 )
Proof: The matrix L has the form
P P,_4 P,
P2 e Pn — Pl P].
L= : . : :
Pnfl Pnf?)_Pan Pnf2
Pn_Pl Pn—Q_Pn—l Pn—l

and can be written as
L=KI,

where fn is the backward identity matrix of the form
(3). Therefore,

det L = det K det fn,

and
~ n(n—1)
det I, = (—1)
Define y3, y4 as (16) and (17), respectively. Accord-
ing to Theorem 12, we obtain the following conclu-
sions: If n = 0 (mod 4), then

2P"
det [ = —2 """ + @ni1
—8P, — 2
n—1 n—1 n n
LB (ys +yr ) +v5 + vyl
4P, +1 '
If n =1 (mod 4), then
2P"
det [ = —2> """ + @ni1
8P, +6
A Ak
4P, + 3 )
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If n =2 (mod 4), then

2P" + Qn+l
det L = —2—-—"
¢ 8P, + 2
Py )yl
4P, +1 ’
If n =3 (mod 4), then
2P + Quit
det L = —-
¢ —8P, — 6
P (s ) s+
4P, + 3 '
The proof is complete. O
2.4 Determinants of the RFMLR and

RLMFL Circulant Matrix Involving
Pell-Lucas Numbers

Theorem 14. Let M = RFMLRcircfr(Qq, . ..

If n is even, then

)Qn)

(Qni1 —2)" +4Qr1
det M = n
¢ “4P, 1 +3
L@ (B g -
—4P,_1+3 ’
and if n is odd, then
(Qni1 —2)" —4Q!
det M =
¢ AP, 1 +1
Q) (BT ) gz
4P,_1 +1 ’
where
—(2P, + 1)+ (2P, + 1)2 — Qy (2 — Qnt1),
(28)
-@2P+1) - \/(2Pn + 1)2 = Qn (2= Qnt1).
(29)
Proof: The matrix M has the form
Q1 Q2 Qn
Qn Ql Qn anl
M=| :
Q3 Q4 - Q3 Qo2
Q2 Q3—Q2 Q1—Qn
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According to Lemma 3 and the Binet form (11), we
have

det M = [T (@1 + Qeei +

i=1

S Quel )

[v+0+ (7 +8)e +

I

s
I
—

(e

QTLEZZ —+ (Qn—H Qn + 2)52 +2 - Qn—H
voe? — (v 4 8)e; + 1

I

-
Il
A

From Lemma 4, (10) and (25), we obtain

=

[Qn{f? + (Qn-H - Qn + 2)52 + 2 - Qn—i—l]

1
(2= Qui1)" +4Q07"
+ (2= Qui1) (227 2071 — 28 — 2,

where z5 and zg are defined as (28) and (29), and

..
I

H v6e7 — (v +6)e; + 1]

=1
= Qn—l _Qn+2(_1)n+1
= 4P, 1 +2(~1)" + 1.

Hence, if n is even, then

(Qni1—2)" +4Qp™!

—4P, 1 +3
(2= Quyr) (557 +2571) — 28 — 23,
—4P, 1 +3 ’

det M =

_|_

and if n is odd, then

(QnJrl — 2)n - 4@2_1

4Pn71 +1
2= @) (5 ) a2
4Pn71 +1 .

det M =

The proof is complete. O

Theorem 15. Ler N = RFMLRcircfr(Qp, ..., Q1).

If n is even, then

(2 - Qn)n + 2n+lpn+1

—4P, —
Q)T+ - -
4P, +1 ’

det N =
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and if n is odd, then

(2 - Qn)n - 2n+1Pn+1

—4P, — 3
Q) (T ) g
4P, + 3 ’

det N =

where

Quit +/Q211 —8Qu+16
5 )
Qnt1 — \/Q%H —8Qn + 16
5 .
Proof: The matrix N has the form

Qn Qn—l
Ql Qn - Ql

z7 = (30)

z8 = (€29)

Q1
Q2

s Quor— Qs Qu-t
Qn—l Qn—? - Qn—l Qn - Ql

According to Lemma 3 and (11), we have

det N = H Qn + Qn-18i + -+ + ng?_l)
1=1

n 1+5n71)€i

Il
::]:

[Y" + 6" +
=1

ot (Y4 8)er

[ Qusit2 -
{ = (v +0)ei + 79

=1

.

By Lemma 4, the Binet form (11) and the identity
(25), we obtain

H (=267 — Qni16i +2—Qn) = (2—Qn)"
=1
—(=2)" T P +(2-Qy) (227 4 ) 2l 2,

where z7 and zg are defined as (30) and (31), and

n

[T 12 = (v +6)ei + 0] = —4Pu+(-1)"—2.
=1

Thus, if n is even, then
(2 - Qn)n + 2n+lpn+1
—4P, —

C-Q) (T ) A -
4P, +1 ’

det N =
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and if n is odd, then

(2 — Qn)n — 2n—HPn—‘,-l
det N =
¢ —4p, -3
2= Qn) (22 2871 — 28— 2p
4P, + 3 '
The proof is complete. a
Theorem 16. Let R = RLMFLcircfr(Q, ..., Q)

and z7, zg are defined by (30) and (31), respectively.
Ifn =0 (mod 4), then

9 _ Qn)n + 2n+1pn+1
—4P, —

B (2—Qn) (z?il

det R = (

n—1 n n
+ 23 )—27—28

4P, +1
Ifn =1 (mod 4), then
(2 - Qn)n - 2n+1Pn+1
det R =
¢ —4P, —3
_(2-Qn) e
4P, + 3 '
Ifn =2 (mod 4), then
2 - Q)" +2"HP
dot i = 27 @) T e
4P, +1
+@—Q@@?“ﬂ$5—ﬁ—%
4P, +1 '
Ifn =3 (mod 4), then
2 Q)" —2"tp
det R = ( Qn) n+1
4P, + 3
N (2—Qn) (z?_l + zg‘_l) — 20— 20
4P, + 3 '
Proof: The matrix R has the form
Ql Qn—l Qn
Q2 Qn — Q1 Q1
R = : : :
Qn—l Qn—3 - Qn—Q Qn—2
Qn - Ql Qn—2 - Qn—l Qn—l
and can be written as
R=NTI,

where fn is the backward identity matrix of the form
(3). Accordingly,

det R = det N det I,
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and
~ n(n—1)
det I, = (—1)" = .
Define z7, zg as (30) and (31), respectively. From The-
orem 15, we obtain the following results: If n = 0
(mod 4), then

(2 - Qn)n + 2n+1pn+1
det R =
et Rt —4AP, — 1
C(2-Qn) (T +2g") -2 — 2
4P, +1 '

If n =1 (mod 4), then

_ n _ o9n+l
det R = (2 Qn) 2 Pn—i—l

—4P, — 3
(2—Qn) (z?_l + zg_l) — 27— zg
4P, + 3 '

If n =2 (mod 4), then

det R = (2 - Qn)n + 2n+1Pn+1
4P, + 1
N (2-Qn) (77 + 27 — 2 — 2
4P, +1 '

If n =3 (mod 4), then

(2—Qn)" = 2" Py

det R =
¢ AP, +3
N 2=Qn) (22 2871 — 28— 28
4P, +3 '
The proof is complete. O
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